Package 'eq5dsuite'

Title: Manipulating and Analysing EQ-5d Data
Description: The EQ-5D is a widely-used standarized instrument for measuring Health Related Quality Of Life (HRQOL), developed by the EuroQol group <https://euroqol.org/>. It assesses five dimensions; mobility, self-care, usual activities, pain/discomfort, and anxiety/depression, using either a three-level (EQ-5D-3L) or five-level (EQ-5D-5L) scale. Scores from these dimensions are commonly converted into a single utility index using country-specific value sets, which are critical in clinical and economic evaluations of healthcare and in population health surveys. The eq5dsuite package enables users to calculate utility index values for the EQ-5D instruments, including crosswalk utilities using the original crosswalk developed by van Hout et al. (2012) <doi:10.1016/j.jval.2012.02.008> (mapping EQ-5D-5L responses to EQ-5D-3L index values), or the recently developed reverse crosswalk by van Hout et al. (2021) <doi:10.1016/j.jval.2021.03.009> (mapping EQ-5D-3L responses to EQ-5D-5L index values). Users are allowed to add and/or remove user-defined value sets. Additionally, the package provides tools to analyze EQ-5D data according to the recommended guidelines outlined in "Methods for Analyzing and Reporting EQ-5D data" by Devlin et al. (2020) <doi:10.1007/978-3-030-47622-9>.
Authors: Kim Rand [aut, cre] , Iryna Schlackow [aut] , Anabel Estévez-Carrillo [aut]
Maintainer: Kim Rand <[email protected]>
License: GPL (>= 2)
Version: 1.0.0
Built: 2025-03-10 04:04:10 UTC
Source: https://github.com/mathsinhealth/eq5dsuite

Help Index


Add utility values to a data frame

Description

This function adds utility values to a data frame based on a specified version of EQ-5D and a country name.

Usage

.add_utility(df, eq5d_version, country)

Arguments

df

A data frame containing the state data. The state must be included in the data frame as a character vector under the column named 'state'.

eq5d_version

A character string specifying the version of EQ-5D, i.e. 3L or 5L.

country

A character string representing the name of the country. This could be in a 2-letter format, full name or short name, as specified in the country_codes datasets.

Value

A data frame with an additional column named 'utility' containing the calculated utility values. If the input country name is not found in the country_codes dataset, a list of available codes is printed, and subsequentyl an error message is displayed and the function stops.

Examples

df <- data.frame(state = c("11111", "11123", "32541"))
.add_utility(df, "5L", "DK")

Check the uniqueness of groups This function takes a data frame 'df' and a vector of columns 'group_by', and checks whether the combinations of values in the columns specified by 'group_by' are unique. If the combinations are not unique, a warning message is printed.

Description

Check the uniqueness of groups This function takes a data frame 'df' and a vector of columns 'group_by', and checks whether the combinations of values in the columns specified by 'group_by' are unique. If the combinations are not unique, a warning message is printed.

Usage

.check_uniqueness(df, group_by)

Arguments

df

A data frame.

group_by

A character vector of column names in 'df' that specify the groups to check for uniqueness.

Value

No return value, called for side effects: it will stop with an error if any group combinations are not unique.

Examples

df <- data.frame(id = c(1, 1, 1, 1, 2, 2),
                 fu = rep(c("baseline", "follow-up"), 3),
                 value = rnorm(6))
.check_uniqueness(df, c("id", "fu"))

.EQxwrprob

Description

Takes a matrix of parameters for reverse crosswalk model, returns 243 x 25 matrix of state/level transition probabilities.

Usage

.EQxwrprob(par = NULL)

Arguments

par

Matrix of model parameters

Value

An 243 * 25 matrix with probabilities for state level transitions.


Helper function for frequency of levels by dimensions tables

Description

Helper function for frequency of levels by dimensions tables

Usage

.freqtab(
  df,
  names_eq5d = NULL,
  name_fu = NULL,
  levels_fu = NULL,
  eq5d_version = NULL
)

Arguments

df

Data frame with the EQ-5D and follow-up columns

names_eq5d

Character vector of column names for the EQ-5D dimensions

name_fu

Character string for the follow-up column. If NULL, no grouping is used, and the table reports for the total population.

levels_fu

Character vector containing the order of the values in the follow-up column. If NULL (default value), the levels will be ordered in the order of appearance in df.

eq5d_version

Version of the EQ-5D instrument

Value

Summary data frame.


Generate colours for PCHC figures

Description

This internal function generates a vector of colours based on the specified base colour. Currently only green and orange colours are implemented. The wrapper is used in Figures 2.2-2.4.

Usage

.gen_colours(col, n)

Arguments

col

A character string specifying the base colour. Only "green" or "orange" is accepted.

n

A positive integer specifying the number of colours to generate.

Value

A vector of colours generated based on the specified base colour and number of colours.

Examples

# generate 10 colours for base colour "green"
.gen_colours("green", 10)
# generate 7 colours for base colour "orange"
.gen_colours("orange", 7)

Calculate the Level Frequency Score (LFS)

Description

This function calculates the Level Frequency Score (LFS) for a given EQ-5D state and a specified version of EQ-5D. If at least one domain contains a missing entry, the whole LFS is set to be NA.

Usage

.get_lfs(s, eq5d_version)

Arguments

s

A character vector representing the EQ-5D state, e.g. 11123.

eq5d_version

A character string specifying the version of EQ-5D, i.e. 3L or 5L.

Value

A character vector representing the calculated LFS.

Examples

.get_lfs("333", "3L") # returns 003
.get_lfs("333", "5L") # returns 00300
.get_lfs("12345", "5L") # returns 11111

Replace NULL names with default values

Description

This function takes in a list of parameters, which would be column names of the input data frame, and checks if they are null. Any nulls are replaced with default values, and the updated list of parameters is returned.

Usage

.get_names(df = NULL, ...)

Arguments

df

a data frame; only used/supplied if levels_fu needs to be defined

...

a list of parameters consisting of any/all of 'names_eq5d', 'name_fu', 'levels_fu', 'eq5d_version', and 'name_vas'.

Value

a list of parameters with null entries replaced with default values.

Examples

.get_names(names_eq5d = c("mo", "sc", "ua", "pd", "ad"))
.get_names(names_eq5d = NULL, eq5d_version = NULL, name_vas = NULL)
.get_names(df = example_data, name_fu = NULL, levels_fu = NULL)

Get the mode of a vector.

Description

This function calculates the mode of a numeric or character vector. If there are multiple modes, the first one is returned. The code is taken from an R help page.

Usage

.getmode(v)

Arguments

v

A numeric or character vector.

Value

The mode of 'v'.

Examples

.getmode(c(1, 2, 3, 3))
.getmode(c("a", "b", "b", "c"))

Modify ggplot2 theme

Description

Modify ggplot2 theme

Usage

.modify_ggplot_theme(p)

Arguments

p

ggplot2 plot

Value

ggplot2 plot with modified theme


Wrapper to determine Paretian Classification of Health Change

Description

This internal function determines Paretian Classification of Health Change (PCHC) for each combination of the variables specified in the 'group_by' argument. It is used in the code for table_2_4-table_2_5 and figure_2_1-figure_2_4. An EQ-5D health state is deemed to be 'better' than another if it is better on at least one dimension and is no worse on any other dimension. An EQ-5D health state is deemed to be 'worse' than another if it is worse in at least one dimension and is no better in any other dimension.

Usage

.pchc(df, level_fu_1, add_noprobs = FALSE)

Arguments

df

A data frame with EQ-5D states and follow-up variable. The dataset is assumed to be have been ordered correctly.

level_fu_1

Value of the first (i.e. earliest) follow-up. Would normally be defined as levels_fu[1].

add_noprobs

Logical value indicating whether to include a separate classification for those without problems (default is FALSE)

Value

A data frame with PCHC value for each combination of the grouping variables. If 'add_noprobs' is TRUE, a separate classification for those without problems is also included.

Examples

df <- data.frame(id = c(1, 1, 2, 2),
                 fu = c(1, 2, 1, 2),
                 mo = c(1, 1, 1, 1),
                 sc = c(1, 1, 5, 1),
                 ua = c(1, 1, 4, 3),
                 pd = c(1, 1, 1, 3),
                 ad = c(1, 1, 1, 1))
.pchc(df, level_fu_1 = 1, add_noprobs = TRUE)

Wrapper to generate Paretian Classification of Health Change plot by dimension

Description

This internal function plots Paretian Classification of Health Change (PCHC) by dimension. The input is a data frame containing the information to plot, and the plot will contain bars representing the proportion of the total data that falls into each dimension, stacked by covariate. The wrapper is used in Figures 2.2-2.4.

Usage

.pchc_plot_by_dim(plot_data, ylab, title, cols, text_rotate = FALSE)

Arguments

plot_data

A data frame containing information to plot, with columns for name (the dimensions to plot), p (the proportion of the total data falling into each dimension), and fu (the follow-up).

ylab

The label for the y-axis.

title

The plot title.

cols

A vector of colors to use for the bars.

text_rotate

A logical indicating whether to rotate the text labels for the bars.

Value

A ggplot object containing the PCHC plot.

Examples

plot_data <- data.frame(name = c("Dimension 1", "Dimension 2"),
p = c(0.5, 0.5),
fu = c("Covariate A", "Covariate B"))
cols <- c("#99FF99", "#006600", "#FFCC99", "#663300")
.pchc_plot_by_dim(plot_data, "Proportion", "Example PCHC Plot", cols)

.pchctab: Changes in health according to the PCHC (Paretian Classification of Health Change)

Description

.pchctab: Changes in health according to the PCHC (Paretian Classification of Health Change)

Usage

.pchctab(
  df,
  name_id,
  name_groupvar,
  names_eq5d = NULL,
  name_fu = NULL,
  levels_fu = NULL,
  add_noprobs = FALSE
)

Arguments

df

Data frame with the EQ-5D, grouping, id and follow-up columns

name_id

Character string for the patient id column

name_groupvar

Character string for the grouping column

names_eq5d

Character vector of column names for the EQ-5D dimensions

name_fu

Character string for the follow-up column

levels_fu

Character vector containing the order of the values in the follow-up column. If NULL (default value), the levels will be ordered in the order of appearance in df.

add_noprobs

if set to TRUE, level corresponding to "no problems" will be added to the table

Value

Summary data frame

Examples

.pchctab(df = example_data, name_groupvar = "surgtype", name_id = "id")

Data checking/preparation: EQ-5D variables

Description

This function prepares a data frame for analysis by extracting, processing, and adding columns for EQ-5D variables, including state, LSS (Level Sum Score), LFS (Level Frequency Score) and utility.

Usage

.prep_eq5d(
  df,
  names,
  add_state = FALSE,
  add_lss = FALSE,
  add_lfs = FALSE,
  add_utility = FALSE,
  eq5d_version = NULL,
  country = NULL
)

Arguments

df

a data frame of EQ-5D scores

names

character vector of length 5 with names of EQ-5D variables in the data frame. The variables should be in an integer format.

add_state

logical indicating whether the EQ-5D state should be added

add_lss

logical indicating whether the LSS (Level Sum Score) should be added

add_lfs

logical indicating whether the LFS (Level Frequency Score) should be added

add_utility

logical indicating whether the utility should be added

eq5d_version

character indicating the version of the EQ-5D questionnaire to use (either "3L" or "5L")

country

character indicating the country to retrieve the quality of life score for

Value

a modified data frame with EQ-5D domain columns renamed to default names, and, if necessary, with added columns for state, LSS, LFS, and/or utility. If any of the checks fail (e.g. EQ-5D columns are not in an integer format), an error message is displayed and the function is stopping.

Examples

set.seed(1234)
df <- data.frame(mo = sample(1:5, 3), sc = sample(1:5, 3), 
  ua = sample(1:5, 3), pd = sample(1:5, 3), ad = sample(1:5, 3))
.prep_eq5d(df, names = c("mo", "sc", "ua", "pd", "ad"), 
  add_state = TRUE, add_lss = TRUE)
.prep_eq5d(df, names = c("mo", "sc", "ua", "pd", "ad"),
  add_state = TRUE, add_lss = TRUE, add_lfs = TRUE, add_utility = TRUE,
  eq5d_version = "5L", country = "Denmark")

Data checking/preparation: follow-up variable

Description

This function prepares the follow-up (FU) variable for analysis by giving it a default name ('fu') and factorising

Usage

.prep_fu(df, name = NULL, levels = NULL)

Arguments

df

A data frame.

name

Column name in the data frame that contains follow-up information.

levels

Levels to factorise the FU variable into.

Value

A data frame with the follow-up variable renamed as "fu" and factorised.

Examples

df <- data.frame(id = c(1, 1, 2, 2),
  visit = c("baseline", "follow-up", "baseline", "follow-up"))
.prep_fu(df = df, name = "visit", levels = c("baseline", "follow-up"))

Data checking/preparation: VAS variable

Description

The function prepares the data for VAS (Visual Analogue Scale) analyses.

Usage

.prep_vas(df, name)

Arguments

df

A data frame.

name

Column name in the data frame that holds the VAS score. The column can only contain integers or NAs

Value

A modified data frame with the VAS score renamed to "vas". If any checks fail (e.g. column is not numeric), an error message is displayed and the function is stopping.

Examples

df <- data.frame(vas_score = c(20, 50, 80, NA, 100))
.prep_vas(df = df, name = "vas_score")
df <- data.frame(vas_score = c(20.5, 50, 80, NA, 100))
.prep_vas(df = df, name = "vas_score")

.pstate3t5

Description

Takes a N x 25 matrix with probabilities per level/dimension, and creates an N * 3125 matrix with probabilities per state

Usage

.pstate3t5(PPP)

Arguments

PPP

N x 25 matrix with probabilities per level/dimension created by EQrxwprobs

Value

An N * 3125 matrix with probabilities per state


.pstate5t3

Description

Takes a 15 x 5 matrix with probabilities per level/dimension, and creates an 3125x243 matrix with probabilities per state

Usage

.pstate5t3(probs = .EQxwprob)

Arguments

probs

15 x 5 matrix with probabilities per level/dimension, typically saved in .EQxwprob

Value

An 3125x243 matrix with probabilities per state


Wrapper to summarise a continuous variable by follow-up (FU)

Description

This function summarizes a continuous variable for each follow-up (FU) and calculates various statistics such as mean, standard deviation, median, mode, kurtosis, skewness, minimum, maximum, range, and number of observations. It also reports the total sample size and the number (and proportion) of missing values for each FU. The input 'df' must contain an ordered FU variable and the continuous variable of interest. The name of the continuous variable must be specified using 'name_v'. The wrapper is used in Table 3.1 (for VAS) or Table 4.2 (for EQ-5D utility)

Usage

.summary_cts_by_fu(df, name_v)

Arguments

df

A data frame containing the FU and continuous variable of interest. The dataset must contain an ordered 'fu' variable.

name_v

A character string with the name of the continuous variable in 'df' to be summarised.

Value

Data frame with one row for each statistic and one column for each FU.

Examples

df <- data.frame(fu = c(1,1,2,2,3,3), 
                 vas = c(7,8,9,NA,7,6))
.summary_cts_by_fu(df, name_v = "vas")

Wrapper to calculate summary mean with 95% confidence interval

Description

This internal function calculates summary mean and 95% confidence interval of the utility variable, which can also be grouped. The function is used in Figures 4.2-4.4.

Usage

.summary_mean_ci(df, group_by)

Arguments

df

A data frame containing a 'utility' column.

group_by

A character vector of column names to group by.

Value

A data frame with the mean, lower bound, and upper bound of the 95

Examples

df <- data.frame(group = c("A", "A", "B", "B"), 
                 utility = c(0.5, 0.7, 0.8, 0.9))
.summary_mean_ci(df, group_by = "group")

Wrapper for the repetitive code in function_table_2_1. Data frame summary

Description

This internal function summarises a data frame by grouping it based on the variables specified in the 'group_by' argument and calculates the frequency of each group. The output is used in Table 2.1

Usage

.summary_table_2_1(df, group_by)

Arguments

df

A data frame

group_by

A character vector of variables in ‘df' to group by. Should contain ’eq5d' and 'fu'.

Value

A summarised data frame with groups defined by 'eq5d' and 'fu' variables, the count of observations in each group, and the frequency of each group.

Examples

set.seed(1234)
df <- data.frame(eq5d = rep(rnorm(5), 2),
                 fu = rep(c(1, 0, 1, 0, 1), 2))
.summary_table_2_1(df, c("eq5d", "fu"))

Summary wrapper for Table 4.3

Description

This internal function creates a summary of the data frame for Table 4.3. It groups the data by the variables specified in 'group_by' and calculates various summary statistics.

Usage

.summary_table_4_3(df, group_by)

Arguments

df

A data frame.

group_by

A character vector of names of variables by which to group the data.

Value

A data frame with the summary statistics.

Examples

df <- data.frame(group = c("A", "A", "B", "B"), 
                 utility = c(0.5, 0.7, 0.8, 0.9))
.summary_table_4_3(df, group_by = "group")

Summary wrapper for Table 4.4

Description

This internal function creates a summary of the data frame for Table 4.4. It groups the data by the variables specified in 'group_by' and calculates various summary statistics.

Usage

.summary_table_4_4(df, group_by)

Arguments

df

A data frame.

group_by

A character vector of names of variables by which to group the data.

Value

A data frame with the summary statistics.

Examples

df <- data.frame(group = c("A", "A", "B", "B"), 
                 utility = c(0.5, 0.7, 0.8, 0.9))
.summary_table_4_4(df, group_by = "group")

eq5d

Description

Get EQ-5D index values for the -3L, -5L, crosswalk (-3L value set applied to -5L health states), reverse crosswealk (-5L value set applied to -3L health states), and -Y-3L

Usage

eq5d(
  x,
  country = NULL,
  version = "5L",
  dim.names = c("mo", "sc", "ua", "pd", "ad")
)

Arguments

x

A vector of 5-digit EQ-5D-3L state indexes or a matrix/data.frame with columns corresponding to EQ-5D state dimensions

country

String vector indicating country names or ISO3166 Alpha 2 / 3 country codes.

version

String indicating which version to use. Options are '5L' (default), '3L', 'xw', 'xwr', and 'Y3L'.

dim.names

A vector of dimension names to identify dimension columns.

Value

A vector of values or data.frame with one column for each value set requested.

Examples

# US -3L value set
eq5d(c(11111, 12321, 32123, 33333), 'US', '3L') 
# Danish and US -5L value sets applied to -3L descriptives, i.e. reverse crosswalk
eq5d(make_all_EQ_states('3L'), c('DK', 'US'), 'XWR') 
# US -5L value set
eq5d(c(11111, 12321, 32153, 55555), 'US', '5L')

eq5d3l

Description

Get EQ-5D-3L index values from individual responses to the five dimensions of the EQ-5D-3L.

Usage

eq5d3l(x, country = NULL, dim.names = c("mo", "sc", "ua", "pd", "ad"))

Arguments

x

A vector of 5-digit EQ-5D-3L state indexes or a matrix/data.frame with columns corresponding to EQ-5D-3L state dimensions.

country

String vector indicating country names or ISO3166 Alpha 2 / 3 country codes.

dim.names

A character vector specifying the names of the EQ-5D-3L dimensions. Default is c("mo", "sc", "ua", "pd", "ad").

Value

A vector of EQ-5D-3L values or data.frame with one column for each value set requested.

Examples

eq5d3l(c(11111, 12321, 32123, 33333), 'US') # US -3L value set
eq5d3l(make_all_EQ_states('3L'), c('DK', 'CA')) # Danish and Canada -3L value sets

eq5d5l

Description

Get EQ-5D-5L index values from individual responses to the five dimensions of the EQ-5D-5L.

Usage

eq5d5l(x, country = NULL, dim.names = c("mo", "sc", "ua", "pd", "ad"))

Arguments

x

A vector of 5-digit EQ-5D-5L state indexes or a matrix/data.frame with columns corresponding to EQ-5D-5L state dimensions.

country

String vector indicating country names or ISO3166 Alpha 2 / 3 country codes.

dim.names

A character vector specifying the names of the EQ-5D-5L dimensions. Default is c("mo", "sc", "ua", "pd", "ad").

Value

A vector of EQ-5D-5L values or data.frame with one column for each value set requested.

Examples

eq5d5l(c(11111, 12321, 32423, 55555), 'IT') # Italy -5L value set
eq5d5l(make_all_EQ_states('5L'), c('Japan', 'China')) # Japon and China -5L value sets

eq5dy3l

Description

Get EQ-5D-Y3L index values from individual responses to the five dimensions of the EQ-5D-Y3L.

Usage

eq5dy3l(x, country = NULL, dim.names = c("mo", "sc", "ua", "pd", "ad"))

Arguments

x

A vector of 5-digit EQ-5D-Y3L state indexes or a matrix / data frame with columns for each dimension.

country

String vector indicating country names or ISO3166 Alpha 2 / 3 country codes.

dim.names

A character vector specifying the names of the EQ-5D-Y3L dimensions. Default is c("mo", "sc", "ua", "pd", "ad").

Value

A vector of EQ-5D-Y3L values or data.frame with one column for each value set requested.

Examples

# Slovenia -Y3L value set
eq5dy3l(x = c(11111, 12321, 33333), country = 'SI') 
# Germany and Spain -Y3L value sets 
eq5dy3l(make_all_EQ_states('3L'), c('Germany', 'Spain'))

eqvs_add

Description

Add user-defined EQ-5D value set and corresponding crosswalk option.

Usage

eqvs_add(
  df,
  version = "5L",
  country = NULL,
  saveOption = 1,
  savePath = NULL,
  description = NULL,
  code2L = NULL,
  code3L = NULL
)

Arguments

df

A data.frame or file name pointing to csv file. The contents of the data.frame or csv file should be exactly two columns: state, containing a list of all 3125 (for 5L) or 243 (for 3L) EQ-5D health state vectors, and a column of corresponding utility values, with a suitable name.

version

Version of the EQ-5D instrument. Can take values 5L (default) or 3L.

country

Optional string. If not NULL, will be used as a country description for the user-defined value set.

saveOption

Integer indicating how the cache data should be saved. 1: Do not save (default), 2: Save in package folder, 3: Save in another path.

savePath

A path where the cache data should be saved when 'saveOption' is 3. Please use 'eqvs_load' to load it in your next session.

description

Optional string. If not NULL, will be used as a descriptive text for the user-defined value set.

code2L

Optional string. If not NULL, will be used as the two-digit code for the value set. Must be different from any existing national value set code.

code3L

Optional string. If not NULL, will be used as the three-digit code for the value set. Must be different from any existing national value set code.

Value

True/False, indicating success or error.

Examples

# make nonsense value set
new_df <- data.frame(state = make_all_EQ_indexes(), TEST = runif(3125))
# Add as value set for Fantasia
eqvs_add(new_df, version = "5L", country = 'Fantasia', saveOption = 1)

eqvs_display

Description

Display available value sets, which can also be used as (reverse) crosswalks.

Usage

eqvs_display(version = "5L", return_df = FALSE)

Arguments

version

Version of the EQ-5D instrument. Can take values 5L (default) or 3L.

return_df

If set to TRUE, the function will return information on the names of the available value sets in a data.frame. Defaults to FALSE

Value

Default NULL, if return_df == TRUE, returns a data.frame with the displayed information.

Examples

# Display available value sets.
eqvs_display

eqvs_drop

Description

Drop user-defined EQ-5D value set to reverse crosswalk options.

Usage

eqvs_drop(country = NULL, version = "5L", saveOption = 1, savePath = NULL)

Arguments

country

Optional string. If NULL, a list of current user-defined value sets will be provided for selection. If set, and matching an existing user-defined value set, a prompt will be given as to whether the value set should be deleted.

version

Version of the EQ-5D instrument. Can take values 5L (default) or 3L.

saveOption

Integer indicating how the cache data should be saved. 1: Do not save (default), 2: Save in package folder, 3: Save in another path.

savePath

A path where the cache data should be saved when 'saveOption' is 3. Please use 'eqvs_load' to load it in your next session.

Value

True/False, indicating success or error.

Examples

# make nonsense value set
  new_df <- data.frame(state = make_all_EQ_indexes(), TEST = runif(3125))
  # Add as value set for Fantasia
  eqvs_add(new_df, version = "5L", country = 'Fantasia', saveOption = 1)
  # Drop value set for Fantasia
  eqvs_drop('Fantasia', saveOption = 1)

eqvs_load

Description

Load cache data from a specified path.

Usage

eqvs_load(loadPath)

Arguments

loadPath

The path from which to load the cache data.

Value

TRUE if loading is successful, FALSE otherwise.


eqxw

Description

Get crosswalk values

Usage

eqxw(x, country = NULL, dim.names = c("mo", "sc", "ua", "pd", "ad"))

Arguments

x

A vector of 5-digit EQ-5D-5L state indexes or a matrix/data.frame with columns corresponding to EQ-5D state dimensions

country

String vector indicating country names or ISO3166 Alpha 2 / 3 country codes.

dim.names

A vector of dimension names to identify dimension columns

Value

A vector of reverse crosswalk values or data.frame with one column per reverse crosswalk set requested.

Examples

eqxw(c(11111, 12521, 32123, 55555), 'US')
eqxw(make_all_EQ_states('5L'), c('DK', 'US'))

eqxwr

Description

Get reverse crosswalk values

Usage

eqxwr(x, country = NULL, dim.names = c("mo", "sc", "ua", "pd", "ad"))

Arguments

x

A vector of 5-digit EQ-5D-3L state indexes or a matrix/data.frame with columns corresponding to EQ-5D state dimensions

country

String vector indicating country names or ISO3166 Alpha 2 / 3 country codes.

dim.names

A vector of dimension names to identify dimension columns

Value

A vector of reverse crosswalk values or data.frame with one column per reverse crosswalk set requested.

Examples

eqxwr(c(11111, 12321, 32123, 33333), 'US')
eqxwr(make_all_EQ_states('3L'), c('DK', 'US'))

example_data

Description

A dataset containing patient-level data in a long format.

Usage

data(example_data)

Format

A data frame with 6600 rows and 13 variables:

id

double Patient id

mo

double EQ-5D-5L Mobility dimension

sc

double EQ-5D-5L Self-care dimension

ua

double EQ-5D-5L Usual activities dimension

pd

double EQ-5D-5L Pain / discomfort dimension

ad

double EQ-5D-5L Anxiety/depression dimension

vas

double Value of the VAS scale measurememnt

fu

character Follow-up (baseline / follow-up)

year_range

character Time period for the follow-up (2009-2010 / 2010-2011 / 2011-2012); could be used as an alternative follow-up variable

month

double Another alternative follow-up variable (1, ..., 15)

surgtype

character Type of surgery (Cataract / Hernia / Hip / Knee / Veins)

gender

character Patient's gender (Female / Male)

age

double Patient's age in years


Figure 1.2.1: Paretian Classification of Health Change

Description

Figure 1.2.1: Paretian Classification of Health Change

Usage

figure_1_2_1(df, names_eq5d = NULL, name_fu = NULL, levels_fu = NULL, name_id)

Arguments

df

Data frame with the EQ-5D, follow-up and patient id columns

names_eq5d

Character vector of column names for the EQ-5D dimensions

name_fu

Character string for the follow-up column

levels_fu

Character vector containing the order of the values in the follow-up column. If NULL (default value), the levels will be ordered in the order of appearance in df.

name_id

Character string for the patient id column

Value

Summary plot and data used for plotting

Examples

tmp <- figure_1_2_1(df = example_data, name_fu = "surgtype", name_id = "id")
tmp$p
tmp$plot_data

Figure 1.2.2: Percentage of respondents who improved overall by the dimensions (%)

Description

Figure 1.2.2: Percentage of respondents who improved overall by the dimensions (%)

Usage

figure_1_2_2(df, names_eq5d = NULL, name_fu = NULL, levels_fu = NULL, name_id)

Arguments

df

Data frame with the EQ-5D, follow-up and patient id columns

names_eq5d

Character vector of column names for the EQ-5D dimensions

name_fu

Character string for the follow-up column

levels_fu

Character vector containing the order of the values in the follow-up column. If NULL (default value), the levels will be ordered in the order of appearance in df.

name_id

Character string for the patient id column

Value

Summary plot and data used for plotting

Examples

tmp <- figure_1_2_2(df = example_data, name_fu = "year_range", name_id = "id")
tmp$p
tmp$plot_data

Figure 1.2.3: Percentage of respondents who worsened overall by the dimensions (%)

Description

Figure 1.2.3: Percentage of respondents who worsened overall by the dimensions (%)

Usage

figure_1_2_3(df, names_eq5d = NULL, name_fu = NULL, levels_fu = NULL, name_id)

Arguments

df

Data frame with the EQ-5D, follow-up and patient id columns

names_eq5d

Character vector of column names for the EQ-5D dimensions

name_fu

Character string for the follow-up column

levels_fu

Character vector containing the order of the values in the follow-up column. If NULL (default value), the levels will be ordered in the order of appearance in df.

name_id

Character string for the patient id column

Value

Summary plot and data used for plotting

Examples

tmp <- figure_1_2_3(df = example_data, name_fu = "year_range", name_id = "id")
tmp$p
tmp$plot_data

Figure 1.2.4: Percentage of respondents who had a mixed change by the dimensions in which they improved and worsened (%)

Description

Figure 1.2.4: Percentage of respondents who had a mixed change by the dimensions in which they improved and worsened (%)

Usage

figure_1_2_4(df, names_eq5d = NULL, name_fu = NULL, levels_fu = NULL, name_id)

Arguments

df

Data frame with the EQ-5D, follow-up and patient id columns

names_eq5d

Character vector of column names for the EQ-5D dimensions

name_fu

Character string for the follow-up column

levels_fu

Character vector containing the order of the values in the follow-up column. If NULL (default value), the levels will be ordered in the order of appearance in df.

name_id

Character string for the patient id column

Value

Summary plot and data used for plotting

Examples

tmp <- figure_1_2_4(df = example_data, name_fu = "year_range", name_id = "id")
tmp$p
tmp$plot_data

Figure 1.3.1: EQ-5D values plotted against LSS

Description

Figure 1.3.1: EQ-5D values plotted against LSS

Usage

figure_1_3_1(df, names_eq5d = NULL, eq5d_version = NULL, country)

Arguments

df

Data frame with the EQ-5D columns

names_eq5d

Character vector of column names for the EQ-5D dimensions

eq5d_version

Version of the EQ-5D instrument

country

A character string representing the name of the country. This could be in a 2-letter format, full name or short name, as specified in the country_codes datasets.

Value

Summary plot and data used for plotting

Examples

tmp <- figure_1_3_1(df = example_data, country = "USA")
tmp$p
tmp$plot_data

Figure 1.3.2: EQ-5D values plotted against LFS

Description

Figure 1.3.2: EQ-5D values plotted against LFS

Usage

figure_1_3_2(df, names_eq5d = NULL, eq5d_version = NULL, country)

Arguments

df

Data frame with the EQ-5D columns

names_eq5d

Character vector of column names for the EQ-5D dimensions

eq5d_version

Version of the EQ-5D instrument

country

A character string representing the name of the country. This could be in a 2-letter format, full name or short name, as specified in the country_codes datasets.

Value

Summary plot and data used for plotting

Examples

tmp <- figure_1_3_2(df = example_data, country = "USA")
tmp$p
tmp$plot_data

Figure 2.1: EQ VAS scores

Description

Figure 2.1: EQ VAS scores

Usage

figure_2_1(df, name_vas = NULL)

Arguments

df

Data frame with the VAS column

name_vas

Character string for the VAS column

Value

Summary plot and data used for plotting

Examples

tmp <- figure_2_1(df = example_data)
tmp$p
tmp$plot_data

Figure 2.2: Mid-point EQ VAS scores

Description

Figure 2.2: Mid-point EQ VAS scores

Usage

figure_2_2(df, name_vas = NULL)

Arguments

df

Data frame with the VAS column

name_vas

Character string for the VAS column

Value

Summary plot and data used for plotting

Examples

tmp <- figure_2_2(df = example_data)
tmp$p
tmp$plot_data

Figure 3.1: EQ-5D values by timepoints: mean values and 95% confidence intervals

Description

Figure 3.1: EQ-5D values by timepoints: mean values and 95% confidence intervals

Usage

figure_3_1(
  df,
  names_eq5d = NULL,
  name_fu = NULL,
  levels_fu = NULL,
  eq5d_version = NULL,
  country
)

Arguments

df

Data frame with the VAS columns

names_eq5d

Character vector of column names for the EQ-5D dimensions

name_fu

Character string for the follow-up column

levels_fu

Character vector containing the order of the values in the follow-up column. If NULL (default value), the levels will be ordered in the order of appearance in df.

eq5d_version

Version of the EQ-5D instrument

country

A character string representing the name of the country. This could be in a 2-letter format, full name or short name, as specified in the country_codes datasets.

Value

Summary plot and data used for plotting

Examples

tmp <- figure_3_1(df = example_data, name_fu = "month", country = "USA")
tmp$p
tmp$plot_data

Figure 3.2: Mean EQ-5D values and 95% confidence intervals: all vs by groupvar

Description

Figure 3.2: Mean EQ-5D values and 95% confidence intervals: all vs by groupvar

Usage

figure_3_2(df, names_eq5d = NULL, name_groupvar, eq5d_version = NULL, country)

Arguments

df

Data frame with the EQ-5D and grouping columns

names_eq5d

Character vector of column names for the EQ-5D dimensions

name_groupvar

Character string for the grouping column

eq5d_version

Version of the EQ-5D instrument

country

A character string representing the name of the country. This could be in a 2-letter format, full name or short name, as specified in the country_codes datasets.

Value

Summary plot and data used for plotting

Examples

tmp <- figure_3_2(df = example_data, name_groupvar = "surgtype", country = "USA")
tmp$p
tmp$plot_data

Figure 3.3: EQ-5D values: smoothed lines and confidence intervals by groupvar

Description

Figure 3.3: EQ-5D values: smoothed lines and confidence intervals by groupvar

Usage

figure_3_3(
  df,
  names_eq5d = NULL,
  name_fu = NULL,
  levels_fu = NULL,
  name_groupvar,
  eq5d_version = NULL,
  country
)

Arguments

df

Data frame with the EQ-5D, follow-up and grouping columns

names_eq5d

Character vector of column names for the EQ-5D dimensions

name_fu

Character string for the follow-up column

levels_fu

Character vector containing the order of the values in the follow-up column. If NULL (default value), the levels will be ordered in the order of appearance in df.

name_groupvar

Character string for the grouping column

eq5d_version

Version of the EQ-5D instrument

country

A character string representing the name of the country. This could be in a 2-letter format, full name or short name, as specified in the country_codes datasets.

Value

Summary plot and data used for plotting

Examples

tmp <- figure_3_3(df = example_data, name_fu = "month", 
  name_groupvar = "gender", country = "USA")
tmp$p
tmp$plot_data

Figure 3.4: EQ-5D values: smoothed lines and confidence intervals by groupvar

Description

Figure 3.4: EQ-5D values: smoothed lines and confidence intervals by groupvar

Usage

figure_3_4(df, names_eq5d = NULL, eq5d_version = NULL, country)

Arguments

df

Data frame with the EQ-5D columns

names_eq5d

Character vector of column names for the EQ-5D dimensions

eq5d_version

Version of the EQ-5D instrument

country

A character string representing the name of the country. This could be in a 2-letter format, full name or short name, as specified in the country_codes datasets.

Value

Summary plot and data used for plotting

Examples

tmp <- figure_3_4(df = example_data, country = "USA")
tmp$p
tmp$plot_data

Figure 3.5: EQ-5D values: smoothed lines and confidence intervals by groupvar

Description

Figure 3.5: EQ-5D values: smoothed lines and confidence intervals by groupvar

Usage

figure_3_5(
  df,
  names_eq5d = NULL,
  name_vas = NULL,
  eq5d_version = NULL,
  country
)

Arguments

df

Data frame with the EQ-5D columns

names_eq5d

Character vector of column names for the EQ-5D dimensions

name_vas

Character string for the VAS column

eq5d_version

Version of the EQ-5D instrument

country

A character string representing the name of the country. This could be in a 2-letter format, full name or short name, as specified in the country_codes datasets.

Value

Summary plot and data used for plotting

Examples

tmp <- figure_3_5(df = example_data, country = "USA")
tmp$p
tmp$plot_data

make_all_EQ_indexes

Description

Make a vector containing all 5-digit EQ-5D indexes for -3L or -5L version.

Usage

make_all_EQ_indexes(
  version = "5L",
  dim.names = c("mo", "sc", "ua", "pd", "ad")
)

Arguments

version

Either "3L" or "5L", to signify whether 243 or 3125 states should be generated

dim.names

A vector of dimension names to be used as names for output columns.

Value

A vector with 5-digit state indexes for all 243 (-3L) or 3125 (-5L) EQ-5D health states

Examples

make_all_EQ_indexes('3L')

make_all_EQ_states

Description

Make a data.frame with all health states defined by dimensions

Usage

make_all_EQ_states(
  version = "5L",
  dim.names = c("mo", "sc", "ua", "pd", "ad"),
  append_index = FALSE
)

Arguments

version

Either "3L" or "5L", to signify whether 243 or 3125 states should be generated

dim.names

A vector of dimension names to be used as names for output columns.

append_index

Boolean to indicate whether a column of 5-digit EQ-5D health state indexes should be added to output.

Value

A data.frame with 5 columns and 243 (-3L) or 3125 (-5L) health states

Examples

make_all_EQ_states('3L')

EQ_dummies

Description

Make a data.frame of all EQ-5D dummies relevant for e.g. regression modeling.

Usage

make_dummies(
  df,
  version = "5L",
  dim.names = c("mo", "sc", "ua", "pd", "ad"),
  drop_level_1 = TRUE,
  add_intercept = FALSE,
  incremental = FALSE,
  prepend = NULL,
  append = NULL,
  return_df = TRUE
)

Arguments

df

data.frame containing EQ-5D health states.

version

Either "3L" or "5L", to signify EQ-5D instrument version

dim.names

A vector of dimension names to be used as names for output columns.

drop_level_1

If set to FALSE, dummies for level 1 will be included. Defaults to TRUE.

add_intercept

If set to TRUE, a column containing 1s will be appended. Defaults to FALSE.

incremental

If set to TRUE, incremental dummies will be produced (e.g. MO = 3 will give mo2 = 1, mo3 = 1). Defaults to FALSE.

prepend

Optional string to be prepended to column names.

append

Optional string to be appended to column names.

return_df

If set to TRUE, data.frame is returned, otherwise matrix. Defaults to TRUE.

Value

A data.frame of dummy variables

Examples

make_dummies(make_all_EQ_states('3L'), '3L')

make_dummies(df = make_all_EQ_states('3L'), 
             version =  '3L', 
             incremental = TRUE, 
             add_intercept = TRUE, 
             prepend = "d_")

Table 1.1.1: Frequency of levels by dimensions, cross-sectional

Description

Table 1.1.1: Frequency of levels by dimensions, cross-sectional

Usage

table_1_1_1(df, names_eq5d = NULL, eq5d_version = NULL)

Arguments

df

Data frame with the EQ-5D and follow-up columns

names_eq5d

Character vector of column names for the EQ-5D dimensions

eq5d_version

Version of the EQ-5D instrument

Value

Summary data frame.

Examples

table_1_1_1(df = example_data)
table_1_1_1(df = example_data, eq5d_version = "3L")

Table 1.1.2: Frequency of levels by dimensions, separated by category

Description

Table 1.1.2: Frequency of levels by dimensions, separated by category

Usage

table_1_1_2(
  df,
  names_eq5d = NULL,
  name_cat = NULL,
  levels_cat = NULL,
  eq5d_version = NULL
)

Arguments

df

Data frame with the EQ-5D and follow-up columns

names_eq5d

Character vector of column names for the EQ-5D dimensions

name_cat

Character string for the category column. If NULL, no grouping is used, and the table reports for the total population, i.e. equal to table 1.1.1.

levels_cat

Character vector containing the order of the values in the category column, if the wish is to have these presented in a particular order. If NULL (default value), unless the variable is a factor, the levels will be ordered in the order of appearance in df.

eq5d_version

Version of the EQ-5D instrument

Value

Summary data frame.

Examples

table_1_1_2(df = example_data, name_cat = "surgtype")

Table 1.1.3: Prevalence of the 10 most frequently observed self-reported health states

Description

Table 1.1.3: Prevalence of the 10 most frequently observed self-reported health states

Usage

table_1_1_3(df, names_eq5d = NULL, eq5d_version = NULL, n = 10)

Arguments

df

Data frame with the EQ-5D columns

names_eq5d

Character vector of column names for the EQ-5D dimensions

eq5d_version

Version of the EQ-5D instrument

n

Number of most frequently observed states to display (default 10)

Value

Summary data frame

Examples

table_1_1_3(df = example_data)
table_1_1_3(df = example_data, n = 5)
table_1_1_3(df = example_data, eq5d_version = "3L")

Table 1.2.1: Frequency of levels by dimensions, by follow-up

Description

Table 1.2.1: Frequency of levels by dimensions, by follow-up

Usage

table_1_2_1(
  df,
  names_eq5d = NULL,
  name_fu = NULL,
  levels_fu = NULL,
  eq5d_version = NULL
)

Arguments

df

Data frame with the EQ-5D and follow-up columns

names_eq5d

Character vector of column names for the EQ-5D dimensions

name_fu

Character string for the follow-up column. If NULL, the function will check if there is a column named "follow-up" or "fu", in which case the first of those will be used.

levels_fu

Character vector containing the order of the values in the follow-up column. If NULL (default value), the levels will be ordered in the order of appearance in df.

eq5d_version

Version of the EQ-5D instrument

Value

Summary data frame.

Examples

table_1_2_1(df = example_data)
table_1_2_1(df = example_data, name_fu = "month")

Table 1.2.2: Changes in health according to the PCHC (Paretian Classification of Health Change)

Description

Table 1.2.2: Changes in health according to the PCHC (Paretian Classification of Health Change)

Usage

table_1_2_2(
  df,
  name_id,
  name_groupvar,
  names_eq5d = NULL,
  name_fu = NULL,
  levels_fu = NULL
)

Arguments

df

Data frame with the EQ-5D, grouping, id and follow-up columns

name_id

Character string for the patient id column

name_groupvar

Character string for the grouping column

names_eq5d

Character vector of column names for the EQ-5D dimensions

name_fu

Character string for the follow-up column

levels_fu

Character vector containing the order of the values in the follow-up column. If NULL (default value), the levels will be ordered in the order of appearance in df.

Value

Summary data frame

Examples

table_1_2_2(df = example_data, name_groupvar = "surgtype", name_id = "id")

Table 1.2.3: Changes in health according to the PCHC, taking account of those with no problems

Description

Table 1.2.3: Changes in health according to the PCHC, taking account of those with no problems

Usage

table_1_2_3(
  df,
  name_id,
  name_groupvar,
  names_eq5d = NULL,
  name_fu = NULL,
  levels_fu = NULL
)

Arguments

df

Data frame with the EQ-5D, grouping, id and follow-up columns

name_id

Character string for the patient id column

name_groupvar

Character string for the grouping column

names_eq5d

Character vector of column names for the EQ-5D dimensions

name_fu

Character string for the follow-up column

levels_fu

Character vector containing the order of the values in the follow-up column. If NULL (default value), the levels will be ordered in the order of appearance in df.

Value

Summary data frame

Examples

table_1_2_3(df = example_data, name_groupvar = "surgtype", name_id = "id")

Table 1.2.4: Changes in levels in each dimension, percentages of total and of type of change

Description

Table 1.2.4: Changes in levels in each dimension, percentages of total and of type of change

Usage

table_1_2_4(df, name_id, names_eq5d = NULL, name_fu = NULL, levels_fu = NULL)

Arguments

df

Data frame with the EQ-5D, id and follow-up columns

name_id

Character string for the patient id column

names_eq5d

Character vector of column names for the EQ-5D dimensions

name_fu

Character string for the follow-up column

levels_fu

Character vector containing the order of the values in the follow-up column. If NULL (default value), the levels will be ordered in the order of appearance in df.

Value

Summary data frame

Examples

table_1_2_4(df = example_data, name_id = "id")

Table 1.3.1: Summary statistics for the EQ-5D values by all the different LSSs (Level Sum Scores)

Description

Table 1.3.1: Summary statistics for the EQ-5D values by all the different LSSs (Level Sum Scores)

Usage

table_1_3_1(df, names_eq5d = NULL, eq5d_version = NULL, country)

Arguments

df

Data frame with the EQ-5D columns

names_eq5d

Character vector of column names for the EQ-5D dimensions

eq5d_version

Version of the EQ-5D instrument

country

A character string representing the name of the country. This could be in a 2-letter format, full name or short name, as specified in the country_codes datasets.

Value

Summary data frame

Examples

table_1_3_1(df = example_data, country = "USA")
table_1_3_1(df = example_data, eq5d_version = "3L", country = "USA")

Table 1.3.2: Distribution of the EQ-5D states by LFS (Level Frequency Score)

Description

Table 1.3.2: Distribution of the EQ-5D states by LFS (Level Frequency Score)

Usage

table_1_3_2(df, names_eq5d = NULL, eq5d_version = NULL)

Arguments

df

Data frame with the EQ-5D columns

names_eq5d

Character vector of column names for the EQ-5D dimensions

eq5d_version

Version of the EQ-5D instrument

Value

Summary data frame

Examples

table_1_3_2(df = example_data)
table_1_3_2(df = example_data, eq5d_version = "3L")

Table 1.3.3: Number of observations in the LFS (Level Frequency Score) according to the EQ-5D values

Description

Table 1.3.3: Number of observations in the LFS (Level Frequency Score) according to the EQ-5D values

Usage

table_1_3_3(df, names_eq5d = NULL, eq5d_version = NULL, country)

Arguments

df

Data frame with the EQ-5D columns

names_eq5d

Character vector of column names for the EQ-5D dimensions

eq5d_version

Version of the EQ-5D instrument

country

A character string representing the name of the country. This could be in a 2-letter format, full name or short name, as specified in the country_codes datasets.

Value

Summary data frame

Examples

df <- example_data[example_data$surgtype == "Knee", ]
 table_1_3_3(df = df,
          names_eq5d = c("mo", "sc", "ua", "pd", "ad"),
          eq5d_version = "5L",
          country = "USA")

Table 1.3.4: Summary statistics of EQ-5D values by LFS (Level Frequency Score)

Description

Table 1.3.4: Summary statistics of EQ-5D values by LFS (Level Frequency Score)

Usage

table_1_3_4(df, names_eq5d = NULL, eq5d_version = NULL, country)

Arguments

df

Data frame with the EQ-5D columns

names_eq5d

Character vector of column names for the EQ-5D dimensions

eq5d_version

Version of the EQ-5D instrument

country

A character string representing the name of the country. This could be in a 2-letter format, full name or short name, as specified in the country_codes datasets.

Value

Summary data frame

Examples

table_1_3_4(df = example_data, country = "Denmark")
table_1_3_4(df = example_data, eq5d_version = "3L", country = "Denmark")

Table 2.1: EQ VAS Score by timepoints

Description

Table 2.1: EQ VAS Score by timepoints

Usage

table_2_1(df, name_vas = NULL, name_fu = NULL, levels_fu = NULL)

Arguments

df

Data frame with the VAS and the follow-up columns

name_vas

Character string for the VAS column

name_fu

Character string for the follow-up column

levels_fu

Character vector containing the order of the values in the follow-up column.

Value

Summary data frame

Examples

table_2_1(df = example_data)

Table 2.2: EQ VAS Scores frequency of mid-points

Description

Table 2.2: EQ VAS Scores frequency of mid-points

Usage

table_2_2(df, name_vas = NULL, add_na_total = TRUE)

Arguments

df

Data frame with the VAS column

name_vas

Character string for the VAS column

add_na_total

Logical, whether to add summary of the missing, and across the Total, data

Value

Summary data frame

Examples

table_2_2(df = example_data)

Table 3.1: EQ-5D values: by timepoints

Description

Table 3.1: EQ-5D values: by timepoints

Usage

table_3_1(
  df,
  names_eq5d = NULL,
  name_fu = NULL,
  levels_fu = NULL,
  eq5d_version = NULL,
  country
)

Arguments

df

Data frame with the EQ-5D and follow-up columns

names_eq5d

Character vector of column names for the EQ-5D dimensions

name_fu

Character string for the follow-up column

levels_fu

Character vector containing the order of the values in the follow-up column. If NULL (default value), the levels will be ordered in the order of appearance in df.

eq5d_version

Version of the EQ-5D instrument

country

A character string representing the name of the country. This could be in a 2-letter format, full name or short name, as specified in the country_codes datasets.

Value

Summary data frame

Examples

table_3_1(df = example_data, country = "USA")
table_3_1(df = example_data, eq5d_version = "3L", country = "Denmark")
table_3_1(df = example_data, country = "Denmark")

Table 3.2 EQ-5D values: by groupvar

Description

Table 3.2 EQ-5D values: by groupvar

Usage

table_3_2(
  df,
  names_eq5d = NULL,
  name_fu = NULL,
  levels_fu = NULL,
  name_groupvar,
  eq5d_version = NULL,
  country
)

Arguments

df

Data frame with the EQ-5D, follow-up and grouping columns

names_eq5d

Character vector of column names for the EQ-5D dimensions

name_fu

Character string for the follow-up column

levels_fu

Character vector containing the order of the values in the follow-up column. If NULL (default value), the levels will be ordered in the order of appearance in df.

name_groupvar

Character string for the grouping column

eq5d_version

Version of the EQ-5D instrument

country

A character string representing the name of the country. This could be in a 2-letter format, full name or short name, as specified in the country_codes datasets.

Value

Summary data frame

Examples

table_3_2(df = example_data, name_groupvar = "surgtype", country = "USA")

Table 3.3 EQ-5D values: by age and groupvar

Description

Table 3.3 EQ-5D values: by age and groupvar

Usage

table_3_3(
  df,
  names_eq5d = NULL,
  name_fu = NULL,
  levels_fu = NULL,
  name_groupvar,
  name_age,
  eq5d_version = NULL,
  country
)

Arguments

df

Data frame with the EQ-5D, age, follow-up and grouping columns

names_eq5d

Character vector of column names for the EQ-5D dimensions

name_fu

Character string for the follow-up column

levels_fu

Character vector containing the order of the values in the follow-up column. If NULL (default value), the levels will be ordered in the order of appearance in df.

name_groupvar

Character string for the grouping column

name_age

Character string for the age column

eq5d_version

Version of the EQ-5D instrument

country

A character string representing the name of the country. This could be in a 2-letter format, full name or short name, as specified in the country_codes datasets.

Value

Summary data frame

Examples

table_3_3(df = example_data, name_age = "age", name_groupvar = "surgtype", 
  country = "USA")

toEQ5Ddims

Description

Generate dimension vectors based on state index

Usage

toEQ5Ddims(x, dim.names = c("mo", "sc", "ua", "pd", "ad"))

Arguments

x

A vector of 5-digit EQ-5D state indexes.

dim.names

A vector of dimension names to be used as names for output columns.

Value

A data.frame with 5 columns, one for each EQ-5D dimension, with names from dim.names argument.

Examples

toEQ5Ddims(c(12345, 54321, 12321))

toEQ5DIndex

Description

Generate EQ-5D state vector from data.frame/matrix or named vector with dimensions.

Usage

toEQ5Dindex(x, dim.names = c("mo", "sc", "ua", "pd", "ad"))

Arguments

x

A data.frame, matrix, or vector containing dimension levels. Should have column names corresponding to the dim.names argument.

dim.names

A vector of dimension names in data.frame/matrix/vector x

Value

A vector of 5-digit EQ-5D health state indexes.

Examples

toEQ5Dindex(c(1,2,3,4,5))

example_data <- as.data.frame(matrix(data = c(1, 2, 3, 4, 5, 
                                              5, 4, 3, 2, 1, 
                                              3, 2, 1, 2, 3), 
                                     ncol = 5, 
                                     byrow = TRUE, 
                                     dimnames = list(NULL, c("mo", "sc", "ua", "pd", "ad"))))
example_data$irrelevant <- c(6,5,3)
toEQ5Dindex(example_data)